FME AI FOR INDUSTRY JAAREVENT

Al en Robotica: De nieuwe norm in automatisering omarmt diversiteit

 \times

•

×

-

PRODUCT

- Shape
- Color

...

Rigidness

DEVIATION

- Defects (cuts, breaks, etc.)
- Mold

...

• Appearance

CLIENT REQUIREMENTS

- Quality
- Packaging
- Size

. . .

DIVERSITY IN-EFFICIENCY WASTE

ACTIONS

- SORTING
- PICKING
- GRADING
- CUTTING
- MANIPULATING
- PACKING
- ASSEMBLING

PURPOSE IS QING

MAIN CHALLENGES IN FOOD

 \times

-

- **GROWING SHORTAGE MANUAL LABOR, EXPERIENCE AND EXPERTISE**
- GLOBAL SUSTAINABILITY GOALS [SDG] \bullet
- DEALING WITH QUALITY AND DIVERSITY

SOLUTIONS FOR THE BIGGEST CHALLENGES IN FOOD

THIS IS NOT POSSIBLE WITHOUT TECHNOLOGY

.

3 ELEMENTS FOR A SUCCESFULL INNOVATION STRATEGY

 \times

 \frown

SUPPORT BASE TRAINING

BUSINESSCASE COST + VALUE

×:

Introducing STAQ: The Future of Food Automation

HIGH LEVEL FRAMEWORK VISUAL

QING

Х

VARIOUS LEVELS OF INTEGRATION

 \times

- Data exchange on various levels ullet
- Less paperwork and less chances of human error lacksquare
- Actually apply the potential of data that is already available lacksquare
- Start small, scale fast ullet

 \times

CURRENT SOLUTION TYPES STAQ

PROCESSING

SEE THINK ACT

AUTOMATED CUTTING AUTOMATED SLICING

QING

HYPE CYCLE FOR ARTIFICIAL INTELLIGENCE

gartner.com

Source: Gartner © 2023 Gartner, Inc. and/or its affiliates. All rights reserved. 2079794 Gartner.

VISION IS EVERYTHING THAT GENERATES AN IMAGE

- RGB 2D CAMERA
 - 3D STEREO CAMERA
 - RADAR \bullet
 - LIDAR
 - NIR (NEAR INFRARED)
 - X-RAY
 - MULTI- HYPERSPECTRAL lacksquare

THIS OPENS UP A LOT OF POTENTIAL APPLICATIONS IN FOOD PROCESSING!

TRADITIONAL VISION VS. VISION AI PROGAMMING VS. TEACHING

- You need software engineering skills
- Takes time
- Hard to modify and improve

- You can do it
- Takes minutes
- Easy to improve

	×
	◆
AMPLE	

TRADITIONAL VISION VS. VISION AI

QING

- Controlled conditions needed
- Not that accurate and reliable

Х

 \blacklozenge

QING

 \times

SUBJECTIVE -> OBJECTIVE

- Objective and reliable -> Less claims
- In control of value -> higher revenue

Insights and data that can be used for further optimization -> cost reduction ROBOVISION

 \times

MAXIMUM VALUE OUT OF HARVEST WITH STAQ

Current process

DATA COLLECTION

 \times

- During production
- Varying conditions to represent exceptions and product changes

-QING

 \times

LABELING AND TRAINING OF POC AI MODEL

QING

RESULTS OF TEST WITH AI MODEL

BENEFITS • VALIDATION ON UN-USED DATA SET

 \times

• PROVIDES INSIGHTS IN ACCURACY AND RELIABILITY OF INITIAL AI MODEL

Х

- IMPLEMENTATION SYSTEM LOWER RISK FOR DEVELOPMENT AND IMPLEMENTATION
- PROVIDES INSIGHTS IN **REQUIREMENTS FOR**
- INVOLVE YOUR TEAM IN SOLUTION DEVELOPMENT
- PROVIDES INSIGHTS IN CAPACITY AND LAYOUT
- SIMULATE MULTIPLE SCENARIOS FOR SOLUTION

 \times

QING

BENEFITS

SIMULATION - CAPACITY & LAYOUT

PROOF OF CONCEPT - HANDLING

STAQ - QC + SORTING

The second second

TESTING @ QING

STÄUBLI

- SCALE IN 2026 (3-8 SYSTEMS)
- DEVELOP SCALING STRATEGY WITH CLIENT
- 2nd SEASON 2025
- SYSTEM OPTIMIZATIONS
 BASED ON LEARNINGS
- WHATS NEXT
- OPERATED 24/7
- THIS SEASON
- OPTIMIZATIONS THROUGHOUT
- COMMISSIONING EARLY JULY
- INSTALLATION END OF JUNE

MILESTONES

DEPLOYMENT

 \times

CONTROLLABLE AND RELIABLE PRODUCTION "every product counts!"

CLOSE THE LOOP | WE START AT THE END

QING

 \times

Product Data

- Objective measurement of quality
- 100% control coverage

AUTOMATED PRODUCT CONTROL WITH AI

- Concrete step towards "close the loop"
- Basis for the roadmap short and long term
- Learn and gain experience with the technology

AUTOMATED DEFECTS REMOVAL FROM THE PRODUCTION LINE

- Automation of manual activities
- Cost reduction
- Impact on indirect losses in production
- Impact on reducing food waste
- Every biscuit is one!
- Visible within the company
- Creating support base

• VALIDATION ON UN-USED DATA SET • PROVIDES INSIGHTS IN ACCURACY AND RELIABILITY OF INITIAL AI MODEL

BENEFITS

QING

RESULTS OF TEST WITH AI MODEL

QING

CORRELATE PRODUCT DATA WITH PROCESS DATA

- CORRELATE DEFECTS WITH CAUSE
- FASTER FEEDBACK AND ACTION LOOP
- LEARN TO PREVENT

SMART 3D BIN PICKING

 \times

•

- Just one model to recognize individual products Integration with 3D camera to determine orientation Automated calculation of best picking position and ideal path • Physical testing with grippers is needed

- Validation with physical setup

USE SIMULATION TO OPTIMIZE SYSTEM

QING

 \times

Various scenarios;

- Layout options ullet
- Type of robots
- Picking strategies

Provides information about;

- Capacity
- Floorspace
- Ergonomics
- Business case

>

 \mathbf{A}

"THE FUTURE OF AUTOMATION EMBRACES DIVERSITY"

.

.

.

.

.

.

.

.

FME PLATFORM AI FOR INDUSTRY

BEDANKT VOOR JE AANDACHT!

Meer informatie:

- Daniël Bottema AWL: d.bottema@awl.nl
- Allart van de Schootbrugge AWL: <u>a.vandeschootbrugge@awl.nl</u>
- Bram de Vrught QING: <u>bdvrught@qing.nl</u>

FME Platform AI for Industry: Patrick Blommerde – FME: patrick.blommerde@fme.nl

